Medium Term Plans for Mathematics (aligned with the 2014 National Curriculum) - Year Six (Spring Term)

Oral mental starters (ongoing, throughout the term) e.g:

- Count from (and back to) 0 in multiples of 3, 4, 6, 7, 8, 9, 11,12, 15, 25, 50, 100 and 1000
- Count from (and back to) 0 in multiples of $0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.25,1.1,1.2,1.5$ (using known multiples and knowledge of place value)
- Recall and use multiplication and division facts for the $2,3,4,5,6,7,8,9,10,11$ and 12 times tables (up to the $12^{\text {th }}$ multiple)
- Multiply decimal numbers (with up to two decimal places) by whole numbers, using knowledge of multiplication facts and place value
- Identify common factors, common multiples and prime numbers
- Undertake mental calculations (using all four operations) with increasingly large numbers and more complex calculations
- Read, write, compare and order numbers within $10,000,000$
- Read, write, compare and order numbers with up to three decimal places; identify the value of each digit in numbers with up to three decimal places
- Round decimal numbers with one or two decimal places to the nearest whole number
- Round decimal numbers with two decimal places to one decimal place
- Use understanding of place value to multiply and divide whole numbers and decimals by 10, 100 and 1,000
- Use negative numbers in context and calculate intervals across zero
- Consolidate understanding of fraction, decimal and percentage equivalents e.g. know that $25 \%=0.25=1 / 4(25 / 100)$
- Compare and order fractions (including those greater than one)
- Consolidate and use square numbers and the notation e.g. $9^{2}=81$; consolidate and use cube numbers and the notation e.g. $4^{3}=64$
- Calculate the mean average of a set of data
- Solve missing number problems using algebra e.g. $2 \mathrm{n}=36 \mathrm{son}=18 ; \mathrm{n} \times \mathrm{m}=60$. What are the possible values of m and n ?
- Convert between different units of measurement (including time), using decimal notation up to three decimal places if appropriate
- Read Roman numerals to $1,000(\mathrm{M})$ and recognise years written in Roman numerals

| Areas of
 Study | No of
 days | Statutory requirements and non-statutory guidance | Suggested
 Key Vocabulary |
| :---: | :---: | :--- | :--- | :--- |
| Number | | Read and write numbers to 10,000,000
 Order and compare numbers within $10,000,000$ | |
| Number and
 place value | $3-5$ | Round numbers up to 10,000,000 to the nearest 10, 100, 1000, 10,000, 100,000 and 1,000,000
 Identify the place value of each digit in a seven-digit number
 Partition seven-digit numbers into millions, hundred thousands, ten thousands, thousands, hundreds,
 tens and ones/units; continue to use place value cards and charts to support, if necessary
 Use knowledge of place value to solve number problems by adding and subtracting 10, 100, 1000,
 $10,000,100,000$ or 1,000,000 to any number up to 10,000,000 | Partition, Place Value
 Digit, number
 Units/ones, Tens,
 Hundreds, Thousands,
 Ten thousands, Hundred
 thousands, Millions |
| Order | | | |
| Compare | | | |
| More than, Less than, <, > | | | |
| Round | | | |

\begin{tabular}{|c|c|c|c|}
\hline Week 1 \& \& \begin{tabular}{l}
e.g. A house in Chelsea is for sale for \(£ 1,365,000\). The house next door is \(£ 100,000\) cheaper. How much does the house next door cost? \\
The population of London is approximately \(8,300,000\). If the population increases by 100,000 over the next year, what will the population be?
\end{tabular} \& \\
\hline \begin{tabular}{l}
Number \\
Negative \\
Numbers \& \\
Roman Numerals \\
Week 2
\end{tabular} \& \begin{tabular}{|c}
3 \\
\\
\\
2
\end{tabular} \& \begin{tabular}{l}
Interpret and use negative numbers in context e.g. temperature or depth below sea level Respond to questions about negative numbers e.g. fill in the missing numbers on a number line; put these temperatures in order from coldest to warmest \(\left(8^{\circ} \mathrm{C}, 18^{\circ} \mathrm{C},-18^{\circ} \mathrm{C},-8^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}\right)\) \\
Count forwards and backwards in steps through zero to include positive and negative whole numbers, e.g. 11, 7, 3, -1, -5 (describe the term to term rule) \\
Calculate intervals including those across zero e.g. the average daily temperature in October was \(15^{\circ} \mathrm{C}\) and in February it was \(-3^{\circ} \mathrm{C}\). How many degrees colder was it in February? \\
Yesterday the temperature during the day was \(8^{\circ} \mathrm{C}\). It dropped by 10 degrees last night. What was the temperature during the night? \\
A diver is swimming below the surface of the water at -30 m . He swims up 12 m and then down 4 metres. Where is he now? \\
Consolidate reading and writing Roman numerals to 1000 (M); recognise years written in Roman numerals e.g. How do you write this year in Roman numerals? Write the year of your birth in Roman numerals (taken from Y5 programmes of study) \\
Extend with more challenging examples e.g. The Great Fire of London was in MDCLXVI - what year was this?
\end{tabular} \& \begin{tabular}{l}
Positive, negative (numbers) \\
Temperature, \({ }^{\circ} \mathrm{C}\) degrees Celsius \\
interval, depth \\
Roman numerals
\[
\mathrm{I}, \mathrm{~V}, \mathrm{X}, \mathrm{~L}, \mathrm{C}, \mathrm{D}, \mathrm{M}
\]
\end{tabular} \\
\hline Algebra

Week 3 \& 5 \& \begin{tabular}{l}
Use simple formulae using symbols and letters to represent variables and unknowns in mathematical situations throughout the year e.g. formula for finding perimeter and area

Express missing number problems algebraically e.g. $180-n=135, n=45 ; 9 n=63, n=7$

Find pairs of numbers that satisfy an equation with two unknowns e.g. $9 \times a=20+b, a=3 a n d b=7$

Enumerate possibilities of combinations of two variables e.g. $\mathrm{n} \times \mathrm{m}=48$. What are the possible values of m and n ?

Recognise, generate and describe linear number sequences, first using words and then algebra e.g. describe and extend this sequence: $4,8,12,16,20,24 \ldots$ (multiples of 4), in words (add 4 each time); write a formula for the nth term ($4 \times n$ or $4 n$)

Solve mathematical problems and puzzles and describe rules using a formula, first in words then algebraically e.g. the handshake problem; the ice-cream problem; circles and squares

 \&

Algebra, symbol, represent, equation, formula, variable, unknown, $\mathrm{n}^{\text {th }}$ term

Problem, puzzle, solution, rule
\end{tabular}

\hline
\end{tabular}

Medium Term Plans for Mathematics (aligned with the 2014 National Curriculum) - Year Six (Spring Term)

\begin{tabular}{|c|c|c|c|}
\hline Number
Multiplication

Week 4 \& 1
3
3

1 \& \begin{tabular}{l}
Consolidate recognising and using square numbers up to 12×12 and the notation for squared number (${ }^{2}$)

Consolidate recognising and using cube numbers and the notation e.g. $4^{3}=4 \times 4 \times 4=64$; relate to volume of a cube and cm^{3}

Consolidate the formal written method of short multiplication to multiply a two-digit number, a three digit-number or a four-digit number by a single digit number; multiply decimal numbers by a single digit number, including in the context of money and measurement (See Calculation Policy for guidance on progression in methods)

Consolidate the formal written method of long multiplication to multiply a two-digit number, a threedigit number or a four digit number by a two-digit number; multiply decimal numbers by a two-digit number, including in the context of money and measurement (See Calculation Policy for guidance on progression in methods)

Solve word problems, which involve short and long multiplication, including money and measures problems

 \&

Square numbers (${ }^{2}$) Cube numbers (${ }^{(3)}$ volume

Multiply, multiplication, times, product Thousands, hundreds, tens, ones/units, digit

Formal method of short multiplication

Formal method of long multiplication
\end{tabular}

\hline Number
Division

Week 5 \& 5 \& \begin{tabular}{l}
Consolidate all mathematical vocabulary related to division including the terms divisor, dividend, quotient e.g. In this calculation, what is the divisor, the dividend and the quotient? $120 \div 12=10$

Consolidate the formal written method of short division with and without remainders (See Calculation Policy for guidance on progression in methods); interpret remainders as whole number remainders, fractions or decimals depending on the context

Introduce the formal written method of long division of three and four digit whole numbers by a 2digit divisor (See Calculation Policy for guidance on progression in methods); interpret remainders as whole number remainders, fractions or decimals depending on the context

Solve word problems, which involve short and long division, with and without remainders; interpret remainders appropriately for the context e.g. There are 972 children in our school. There are 36 classes and all classes have an equal number of children. How many children are in each class? (No remainder); Sixteen friends go out for a celebration meal. The bill comes to $£ 460$. How much do they each spend? (Decimal remainder in the context of money); A factory produces ribbon. It makes 2505 m of ribbon this week. Each roll holds 75 m . How many full rolls can be sent to the shop? (Rounding down)

NB the short method of division is sometimes the most appropriate method when dividing by a two digit number but in most cases long division will need to be used (see Calculation Policy)

 \&

Divide, division, divisor, dividend, quotient,

Short division, long division

Formal layout

Round up/down, remainder
\end{tabular}

\hline
\end{tabular}

Medium Term Plans for Mathematics (aligned with the 2014 National Curriculum) - Year Six (Spring Term)

Number

Fractions
(including
decimals and percentages)

5

Consolidate understanding of fractions from previous term/years in problem solving contexts e.g. I have saved $£ 450$ in my bank account. I spend $1 / 9$ of my savings on new trainers. How much do my trainers cost? How much money do I have left? What fraction of my savings is this?
Add and subtract fractions with different denominators and mixed numbers in problem solving contexts e.g. I have $1 / 2$ a cheese and tomato pizza and $3 / 8$ of a mushroom pizza How much pizza do I have on my plate? $1 / 2+3 / 8=4 / 8+3 / 8=7 / 8$ (I have $7 / 8$ of a pizza on my plate);
There are $13 / 4$ pizzas in the fridge and I eat $7 / 8$ of a pizza. How much pizza is left for later? $13 / 4=7 / 4$ (convert mixed number to improper fraction) $7 / 4-7 / 8=14 / 8-7 / 8=7 / 8$ (1 have $7 / 8$ of a pizza left for later)

Multiply simple pairs of proper fractions, writing the answer in its simplest form $2 / 3 \times 1 / 2=2 / 6=1 / 3$ (consider the use of diagrams to support understanding)
Introduce dividing proper fractions by whole numbers e.g. $1 / 3 \div 2=1 / 6$ (consider the use of diagrams to support understanding)
Consolidate understanding of fraction, decimal and percentage equivalents e.g. know that $43 \%=$ $0.43=43 / 100$
Know decimal equivalents of $1 / 2,1 / 4,3 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 ; associate fractions with division e.g. $3 / 4=0.75$ because $3 \div 4=0.75$ (use a calculator to support)
Extend by calculating other decimal fraction equivalents e.g. $3 / 8=0.375$ because $3 \div 8=0.375$ (consider the use of a calculator, as appropriate)

Find percentages of whole number quantities e.g. 10% of $£ 86=£ 8.60 ; 20 \%$ of $£ 86=£ 17.20$; 5% of $£ 86=£ 4.30 ; 1 \%$ of $£ 86=86$ p; extend with e.g. 15% of $£ 86=£ 8.60+£ 4.30=£ 12.90$

Solve problems involving the calculation of percentages and the use of percentages for comparison e.g. A computer game costs $£ 37$. Today there is a 10% off sale. How much does the game cost today? What if there was a 15% off sale?

Anthony scored $23 / 50$ in a test. What was his percentage score? Emily scored $13 / 25$ in a different test. Who did better, Anthony or Emily?

Numerator, denominator Equivalent fractions, mixed number, improper fractions

Common factors, common multiples

Decimal, fraction, percentage equivalents

Medium Term Plans for Mathematics (aligned with the 2014 National Curriculum) - Year Six (Spring Term)

\begin{tabular}{|c|c|c|c|}
\hline Week 7 \& 1

2 \& | Consolidate ratio and understand that it is a comparison of part to part e.g. in this recipe, for every egg you need three spoonfuls of flour; use the notation $1: 3$ (a:b); describe ratio using words and notation e.g. Make a drink with 10 ml of orange squash and 50 ml of water. What is the ratio of orange squash to water in this recipe? Explain how to use integer multiplication or division to make larger or smaller amounts of drink? |
| :--- |
| Introduce proportion as a way to express relationships using fractions e.g. in this tower there are 3 blue bricks and 5 green bricks. What proportion of the bricks is blue? 3/8. What proportion of the bricks is green? 5/8; Make a drink with 10 ml of orange squash and 50 ml of water. What proportion (fraction) of the drink is orange squash? (1/6) and what proportion is water? $(5 / 6)$ | \& Ratio (:), proportion, fraction

\hline | Geometry |
| :--- |
| Properties of | \& 1 \& Consolidate identifying, describing, comparing and classifying 2-D shapes, including all triangles and quadrilaterals, using the properties taught in previous years (acute/obtuse/reflex/right angle; regular/irregular; lines of symmetry/symmetric/symmetrical; 'pairs of parallel sides'); use conventional marking for parallel lines and right angles \& All relevant vocabulary from previous years

\hline shapes \& 3 \& | Use knowledge that angles in a straight line total 180° and that angles at a point total 360° to calculate missing angles on a straight line and at a point; express missing numbers algebraically |
| :--- |
| Know the internal angles of a triangle total 180° and the internal angles of a quadrilateral total 360°; use a protractor to check; calculate a missing angle in triangles and quadrilaterals; express missing angles algebraically; extend with knowledge of internal angles of other polygons |
| Know that vertically opposite angles are equal; use a protractor to check; calculate missing angles that are vertically opposite; express the missing angle algebraically | \& | Degrees ${ }^{\circ}$ |
| :--- |
| Internal angles, vertically opposite angles |

\hline Week 8 \& 1 \& Introduce the names of the parts of a circle: radius, diameter, circumference; know that the diameter is twice the radius; extend by expressing the relationship algebraically ($\mathrm{d}=2 \times \mathrm{r}$) \& Radius, diameter, circumference

\hline | Measurement |
| :--- |
| (perimeter, area and volume) | \& 5 \& | Solve problems involving similar shapes where the scale factor is known or can be found e.g. draw a rectangle with given dimensions. What is the perimeter? What is the area? Enlarge by a scale factor of two (double the lengths of the sides). What is the new perimeter? What is the new area? Understand that a scale factor of three means multiply the lengths by 3 |
| :--- |
| Extend by calculating the area of triangles and then parallelograms by dissecting and relating to the area of a rectangle; understand and use the formula (in words and symbols) for the area of triangles and parallelograms | \& | Scale factor, enlarge, Perimeter |
| :--- |
| Area |
| Square centimetres, cm², square metres, m^{2}, square millimetres, mm^{2}, square kilometres, km^{2} |

\hline
\end{tabular}

Medium Term Plans for Mathematics (aligned with the 2014 National Curriculum) - Year Six (Spring Term)

Week 9		Consolidate understanding of volume and express the formula for finding the volume of a cube/cuboid in words using letters/symbols ; use the terms and standard units cubic centimetres, cm^{3} and cubic metres m^{3}; extend to other units e.g. mm^{3} Solve problems relating to volume e.g. A cereal box is 30 cm tall, 6 cm deep and 20 cm wide. What is its volume? A $180 \mathrm{~cm}^{3}$ cuboid is 12 cm long and 3 cm deep. What is its width?	Volume, cube, cuboid Cubic centimetres, cm^{3}, mm^{3}
Number Problem solving with all operations Week 10	5	Solve one-step, two-step and multi-step word problems (including money and measures problems), using all 4 operations, deciding which operation to use; use rounding and inverse operations to estimate and check answers to calculations e.g. There is space in the multi-storey car park for 17 rows of 30 cars on each of the 4 floors. How many cars can park? What if there were already 54 cars in the car park - how many spaces would be left? One toffee apple needs: 1 stick, 100 g of sugar and 1 apple 50 sticks cost $£ 6.50,1 \mathrm{~kg}$ of sugar costs $£ 1.20$ and 100 apples cost $£ 22.50$ Children make 100 toffee apples for charity. They sell them for $£ 1$ each. The profit goes to charity. Work out how much money goes to charity. Solve problems and puzzles relating to all 4 operations, some in a context and some not set in a context, including the use of brackets, order of operations (BODMAS), missing numbers/digits (Consider the use of the Primary Strategy documents: 'Problems and Puzzles'/ Mathematical Challenges for more able pupils'; Reasoning about numbers with challenges and simplifications)	word problems, puzzles, solution estimate, inverse, bracket, rounding
Geometry (3D shape) Statistics (data handling and mean average)	2 2	Consolidate recognising and naming 3D shapes, from 2D representations; describe the properties of 3D shapes using vocabulary from previous years including parallel or perpendicular faces Build 3D shapes, including making nets e.g. cube, cuboid, triangular prism, tetrahedron; Investigate the different nets that would make given 2D representations of 3D shapes Interpret and construct line graphs, with a range of scales e.g. make a conversion chart for £s to euros and answer related questions; construct and interpret a line graph showing average temperature each month for a year Interpret pie charts and extend by constructing pie charts e.g. make a simple pie chart to show children's favourite way to eat potatoes (mash, roast, chips, boiled) NB connect work on angles, fractions and percentages to the interpretation of pie charts	All relevant vocabulary relating to 3D shapes from previous years, including: net Straight line graph, scale, conversion chart, pie chart

6
Produced for Southwark Primary Schools by a working party led by Diane Andrews, maths consultant

Medium Term Plans for Mathematics (aligned with the 2014 National Curriculum) - Year Six (Spring Term)

	1	Calculate and interpret the mean as an average for simple sets of discrete data in different contexts e.g. Tom has been keeping a record of his mental maths test scores each week. His scores are 12, $10,14,13,12$ and 11. What is his mean average score? Consider when it is appropriate to find the mean of a set of data	Mean average, set of data
Week 11			
Additional weeks To be used for: - assesment, consolidation and responding to AfL - additional using and applying activities			

Summer Term

- It is envisaged that the weeks leading up to SATs will be spent consolidating and responding to AfL and that plans will vary from class to class, according to needs
- A post SATs plan will be developed, including using and applying activities, maths trails and suggested activities that will prepare children for the transition to KS3

